Big Bend Community College

Intermediate Algebra MPC 099

Lab Notebook

Intermediate Algebra Lab Notebook by Tyler Wallace is licensed under a Creative Commons Attribution 3.0 Unported License. Permissions beyond the scope of this license may be available at http://wallace.ccfaculty.org/book/book.html.

Table of Contents

Module A: Compound Inequalities and Systems of Equations	3
Module B: Radicals	.27
Module C: Quadratics	.51
Module D: Rational Equations	.80
Module E: Functions	95

MPC 099 Module A: Compound Inequalities and Systems of Equations

Compound Inequalities - AND

Compound Inequality:	
AND:	
Solving Inequalities is just like solving	_, just be sure to when we
by a	
Example A	Example B
$6x + 5 < 11$ AND $-7x + 2 \le 44$	$11x - 10 > 3x - 2 \text{ AND } 2(9x + 3) - 2 \ge 10x + 52$
Practice A	Practice B

Compound Inequalities - OR

OR:		
Don't forget to	when	by a
To represent two parts of a graph in interval i	notation we	use
Example A	Exa	mple B
$4x + 7 < -5 \text{ OR } -4x - 8 \le -20$	8 <i>x</i>	$x + 9 < 4x - 19 \text{ OR } 2(6x - 8) - 2 \le 8x - 50$
Practice A	Pra	ctice B
Tractice A	l l a	ctice b

Compound Inequalities - Tripartite

Tripartite Inequalities:			
Be sure when solving to balance on			
Example A	Example B		
$-5 \le 2x - 17 < 9$	$4 < 4 - 3x \le 7$		
Practice A	Practice B		

Absolute Value Inequalities - Simple

Absolute Value:				
Consider:	x < 2	<i>x</i> >	2	
Example A			Example B	
	$ x \ge 8$			$ x \le 5$
Practice A			Practice B	

Absolute Value Inequalities - Solving

To solve we first set up a	then it!
Example A	Example B
3x - 5 > 8	$ 2x - 7 \le 3$
Practice A	Practice B

Absolute Value Inequalities - Isolate Absolute

Before we can set up a compound inequality, we must first the absolute value!			
Beware: with absolute value we cannot	or		
Example A	Example B		
2 - 7 3x + 4 < -19	$5 + 2 4x - 1 \le 17$		
Practice A	Practice B		

Systems of Equations - Introduction to Substitution

System of Equations: Severala	and several	working
The solution to a system of equations is given as	s an	written
Substitution: replace the with wh	nat it	
Example A	Example B	
x = -3 $2x - 3y = 12$		4x - 7y = 11 $y = -1$
Practice A	Practice B	

Systems of Equations - Substitute Expression

Just as we can replace a variable with a number, we can also replace it with an			
Whenever we substitute it is important to remember			
Example A	Example B		
y = 5x - 3 $-x - 5y = -11$	2x - 6y = -24 $x = 5y - 22$		
Practice A	Practice B		

Systems of Equations - Solve for a Variable

To use substitution we may have to	a lone variable		
If there are several lone variables			
Example A	Example B		
6x + 4y = -14 $x - 2y = -13$	-5x + y = -17 $7x + 8y = 5$		
Practice A	Practice B		

Systems of Equations - Substitution with Special Cases

If the variables subtract out to zero then it means either			
there is or			
Example A	Example B		
x + 4y = -7 $21 + 3x = -12y$	5x + y = 3 $8 - 3y = 15x$		
Practice A	Practice B		

Systems of Equations - Addition

If there is no lone variable, it may be better to use			
This method works by adding the a	nd	sides of the equations together!	
Example A	Example B		
-8x - 3y = -12 $2x + 3y = -6$		-5x + 9y = 29 $5x - 6y = -11$	
Practice A	Practice B		

Systems of Equations - Addition with Multiplication

Addition only works if one of the variables have		
To get opposites we can multiply	of an equation to ge	t the values we want!
Be sure when multiplying to have a	and	in front of a variable.
Example A	Example B	
2x - 4y = -4 $4x + 5y = -21$	-5x $-7x$	x - 3y = -3 $x + 12y = 12$
Practice A	Practice B	
Practice A	Practice B	

Systems of Equations - Multiplying Two Equations

Sometimes we may have to multiply	by something to get opposites
The opposite we look for is the of both	coefficients.
Example A	Example B
-6x + 4y = 26 $4x - 7y = -13$	3x + 7y = 2 $10x + 5y = -30$
Practice A	Practice B

Systems of Equations - Special Cases with Addition

If the variables subtract out to zero then it means either	
there is	or
Example A	Example B
2x - 4y = 16 $3x - 6y = 20$	-10x + 4y = 6 $25x - 10y = 15$
Practice A	Practice B

Systems of 3 Variables - Simple

To solve systems with three variables we must	the
variable	
This will give us equations with va	riables we can then solve for!
Example A	Example B
-x + 2y + 4z = -20 $-2x - 2y - 3z = 5$ $4x - 2y - 2z = 26$	3x - 3y + 5z = 16 $2x - 6y - 5z = 35$ $-5x - 12y + 5z = 28$
Practice A	Practice B

3 Variables - Multiplying to Eliminate Variables

To eliminate a variable, we may have to _	one or more equations to get
Example A	
	2x - 2y - z = 8 $6x - 3y - 3z = 27$ $-3x - 5y - z = -15$
Practice A	
Practice A	

Value/Interest Problems - Value with 1 Variable

Value Table:		
The equation always comes from the		
Example A	Example B	
Brian has twice as many dimes as quarters. If the value of the coins is \$4.95, how many of each does he have?	A child has three more nickels than dimes in her piggy-bank. If she has \$1.95 in the bank, how many of each does she have?	
Practice A	Practice B	

Value/Interest Problems - Interest with 1 Variable

Interest Table:		
The equation always comes from the		
Example A	Example B	
Sophia invested \$1900 in one account and \$1500 in another account that paid 3% higher interest rate. After one year she had earned \$113 in interest. At what rates did she invest?	Carlos invested \$2500 in one account and \$1000 in another which paid 4% lower interest. At the end of a year he had earned \$345 in interest. At what rates did he invest?	
Practice A	Practice B	

Value/Interest Problems - Value with 2 Variables

With two variables the equations will come from the	e and columns	ŝ.
Example A	Example B	
Scott has \$2.15 in his pocket made up of eleven quarters and dimes. How many of each coin does he have?	If 105 people attended a concert and tickets for adults cost \$2.50 while tickets for children cost \$1.75 and total receipts for the concert were \$22 how many children and how many adults went to the concert?	
Practice A	Practice B	

Value/Interest - Interest with 2 Variables

With two variables the equations will come from the	and	columns.
Example A	Example B	
A woman invests \$4600 in two different accounts. The first paid 13%, the second paid 12% interest. At the end of the first year she had earned \$586 in interest. How much was in each account?	A bank loaned out \$4900 to two diff companies. The first loan had a 4% the second had a 13% interest rate the first year the loan had accrued interest. How much was loaned at 6	interest rate; . At the end of \$421 in
Practice A	Practice B	

Mixture Problems - Known Starting Amount

Mixture Table:		
The equation always comes from the		
Example A	Example B	
A store owner wants to mix chocolate an nuts to make a new candy. How many pounds of chocolate costing \$8.50 per pound should be mixed with 25 pounds of nuts that cost \$2.50 per pound to make a mixture worth \$4.33 per pound?	You need a 55% alcohol solution. On hand, you have 600 mL of 10% alcohol mixture. You also have a 95% alcohol mixture. How much of the 95% mixture should you add to obtain your desired solution?	
Practice A	Practice B	

Mixture - Unknown Starting Amount

With two variables the equations will come from the	and columns.
Example A	Example B
A chemist needs to create 100 mL of a 38% acid solution. On hand she has a 20% acid solution and a 50% acid solution. How many mL of each should she use?	A coffee distributor needs to mix a coffee blend that normally sells for \$8.90 per pound with another coffee blend that normally sells for \$11.30 per pound. If the distributor wishes to create 70 pounds of coffee that can sell for \$11.16 per pound, how many pounds of each kind of coffee should the mix?
Practice A	Practice B

Mixture - Pure Solutions

The percentage of acid (or other chemical) in pure acid is		
The percentage of acid (or other chemical) in water is		
Example A	Example B	
You need 1425 mL of 10% alcohol solution. On hand you have a 5% alcohol mixture and pure alcohol. How much of each should you use?	You need a 60% methane solution. On hand you have 180 mL of an 85% methane solution. How much water will you need to add to obtain the desired solution?	
Practice A	Practice B	

MPC 099 Module B: Radicals

Simplify Radicals - Prime Factorization

Prime Factorization:		
To find a prime factorization we	by	
A few prime numbers:		
Example A	Example B	
1350	168	
Practice A	Practice B	

Simplify Radicals - Perfect Roots

Roots: $\sqrt[n]{m}$ where n is the	
Roots of an expression with exponents:	the by the
Example A	Example B
$\sqrt{46656}$	√1889568
Practice A	Practice B

Simplify Radicals - Not Perfect Radicals

To take roots we	the	by the	
$\sqrt{a^2b} =$			
$\sqrt[n]{a^n b} =$			
When we divide if there is a rem	ainder, the remaind	er	
Example A		Example B	
$\sqrt{72}$		³ √750	
Practice A		Practice B	

Simplify Radicals - With Coefficients

If there is a coefficient on the radical:	by what
Example A	Example B
$-8\sqrt{600}$	3√√−96
Practice A	Practice B

Simplify Radicals - Variables

Variables in Radicals:	the	by the	
Remainders			
Example A		Example B	
$\sqrt[4]{a^{13}b^{23}c^{10}d^3}$		$\sqrt{125x^4y}$	z ⁵
Practice A		Practice B	
Fractice A		Practice B	

Add/Subtract/Multiply - Adding Like Radicals

Simplify: $2x - 5y + 3x + 2y$		
Simplify: $2\sqrt{3} - 5\sqrt{7} + 3\sqrt{3} + 2\sqrt{7}$		
When adding and subtracting radicals we can		
Example A	Example B	
$-4\sqrt{6} + 2\sqrt{11} + \sqrt{11} - 5\sqrt{6}$	$\sqrt[3]{5} + 3\sqrt{5} - 8\sqrt[3]{5} + 2\sqrt{5}$	
Practice A	Practice B	

Add/Subtract/Multiply - Simplify and Add

Before adding radicals together		
Example A	Example B	
$4\sqrt{50x} + 5\sqrt{27} - 3\sqrt{2x} - 2\sqrt{108}$	$\sqrt[3]{81x^3y} - 3y\sqrt[3]{32x^2} + x\sqrt[3]{24y} - \sqrt[3]{500x^2y^3}$	
Practice A	Practice B	

Add/Subtract/Multiply - Multiply Monomials

Product Rule: $a\sqrt[n]{b} \cdot c\sqrt[n]{d} =$	
Always be sure your final answer is	
Example A	Example B
$4\sqrt{6}\cdot2\sqrt{15}$	$-3\sqrt[4]{8}\cdot 7\sqrt[4]{10}$
Practice A	Practice B

Add/Subtract/Multiply - Distributing with Radicals

Recall: $a(b+c) =$		
Always be sure your final answer is		
Example A	Example B	
$5\sqrt{10}(2\sqrt{6}-3\sqrt{15})$	$7\sqrt{3}\big(\sqrt{6}+9\big)$	
Practice A	Practice B	

Add/Subtract/Multiply - FOIL with Radicals

Recall: $(a+b)(c+d) =$	
Always be sure your final answer is	
Example A	Example B
$(3\sqrt{7}-2\sqrt{5})(\sqrt{7}+6\sqrt{5})$	$(2\sqrt[3]{9} + 5)(4\sqrt[3]{3} - 1)$
Practice A	Practice B

Add/Subtract/Multiply - Conjugates

Recall: $(a+b)(a-b) =$			
Always be sure your final answer is			
Example A	Example B		
$(4+2\sqrt{7})(4-2\sqrt{7})$	$(4\sqrt{3} - 5\sqrt{6})(4\sqrt{3} + 5\sqrt{6})$		
Practice A	Practice B		

Add/Subtract/Multiply - Perfect Square

Recall: $(a+b)^2 =$ Always be sure your final answer is			
			
Example A	Example B		
$\left(\sqrt{6}-\sqrt{2}\right)^2$	$\left(2+3\sqrt{7}\right)^2$		
Practice A	Practice B		

Rationalize Denominators - Simplifying with Radicals

Expressions with Radicals: Always	_ the first
Before with fractions, be sure to _	first
Example A	Example B
$\frac{15 + \sqrt{175}}{10}$	$\frac{8-\sqrt{48}}{6}$
Practice A	Practice B

Rationalize Denominators - Quotient Rule

Quotient Rule:			
Often it is helpful to reduce the first,	then reduce the		
Example A	Example B		
$\frac{\sqrt{48}}{\sqrt{150}}$	$\sqrt{\frac{225x^7y^2}{20x^3y^8}}$		
Practice A	Practice B		

Rationalize Denominators - Monomial Square Root

Rationalize Denominators: No	No in the		
To clear radicals:	by extra needed factors in denominator (multiply by same on top!)		
It may be helpful to	first (both	and)
Example A		Example B	
$\frac{\sqrt{7ab}}{\sqrt{6ac^2}}$			$\sqrt{\frac{5xy^3}{15xyz}}$
Practice A		Practice B	

Rationalize Denominators - Monomial Higher Root

Use the	
To clear radicals:	by extra needed factors in denominator (multiply by same on top!)
Hint: numbers	
Example A	Example B
$\frac{5}{\sqrt[7]{b^2}}$	$\sqrt[3]{\frac{7}{9a^2b}}$
Practice A	Practice B

Rationalize Denominators - Binomial Denominators

What doesn't work: $\frac{1}{2+\sqrt{3}}$			
Recall: $(2+\sqrt{3})($			
Multiply by the			
Example A	Example B		
$\frac{6}{5-\sqrt{3}}$	$\frac{3-5\sqrt{2}}{4+2\sqrt{2}}$		
Practice A	Practice B		
1	1		

Rational Exponents - Convert

If we divide the exponent by the index, then $\sqrt[n]{a^m} =$			
The index is the			
Example A	Example B		
Write as an exponent: $\sqrt[7]{m^5}$	Write as a radical: $(ab)^{2/3}$		
Evample C	Evample D		
Example C	Example D		
Write as a radical: $x^{-4/5}$	Write as an exponent $\frac{1}{(\sqrt[3]{4x})^5}$		
Practice A	Practice B		
Practice C	Practice D		

Rational Exponents - Evaluate

To evaluate a rational exponent			
Example A	Example B		
81 ^{3/4}	125 ^{-4/3}		
Practice A	Practice B		

Rational Exponents - Simplify

Recall Exponent Properties:

$$a^ma^n =$$

$$\frac{a^m}{a^n} =$$

$$(ab)^m =$$

$$\left(\frac{a}{b}\right)^m =$$

$$(a^m)^n =$$

$$a^0 =$$

$$a^{-m} =$$

$$\frac{1}{a^{-m}} =$$

$$\left(\frac{a}{b}\right)^{-m} =$$

To Simplify:

Example A

$$\frac{x^{4/3}y^{2/7}x^{5/4}y^{3/7}}{x^{1/2}y^{2/7}}$$

Example B

$$\left(\frac{x^{3/2}y^{-1/3}}{x^{1/4}y^{2/3}x^{-5/2}}\right)^{-1/8}$$

Practice A

Practice B

Mixed Index - Reduce Index

Using Rational Exponents: $\sqrt[8]{x^6y^2}$			
To reduce the index the	and by		
Without using rational exponents: $\sqrt[8]{x^6y^2}$			
Hint: any numbers			
Example A	Example B		
$\sqrt[15]{x^3y^9z^6}$	$\sqrt[25]{32a^{10}b^5c^{20}}$		
Practice A	Practice B		

Mixed Index - Multiply

Using Rational Exponents: $\sqrt[3]{a^2b} \cdot \sqrt[4]{ab^2}$			
Get a by	the	and	
Without using rational exponents: $\sqrt[3]{a^2b} \cdot \sqrt[4]{ab^2}$			
Hint: any numbers			
Always be sure your final answer is			
Example A	Example B		
$\sqrt[4]{m^3n^2p}\cdot \sqrt[6]{mn^2p^3}$		$\sqrt[3]{4x^2y} \cdot \sqrt[5]{8x^4y^2}$	
Practice A	Practice B		

Mixed Index - Divide

Division with mixed index – Get a		
Hint: any numbers		
May have to	_	
Example A	Example B	
$\frac{\sqrt{ab^3}}{\sqrt[3]{ab^2}}$	$\frac{\sqrt[6]{2x^4y^2}}{\sqrt[8]{128xy^6}}$	
Practice A	Practice B	

MPC 099 Module C: Quadratics

Complex Numbers – Square Roots of Negatives

Define: $\sqrt{-1} =$ and therefore, $i^2 =$		
Now we can calculate: $\sqrt{-25}$		
Expressions with Radicals: Always	the first	
Before with fractions, be sure to	first	
Example A	Example B	
$\frac{15 + \sqrt{-300}}{5}$	$\frac{20 + \sqrt{-80}}{8}$	
Practice A	Practice B	

Complex Numbers – Add/Subtract

i works just like		
Example A	Example B	
(5-3i)+(6+i)	(-5-2i)-(3-6i)	
Practice A	Practice B	

Complex Numbers – Multiply

i works just like	
Remember $i^2 =$	
Example A	Example B
(-3i)(6i)	2i(5-2i)
Evample C	Evample D
Example C $(4-3i)(2-5i)$	Example D $ (3+2i)^2 $
Practice A	Practice B
Practice C	Practice D

Complex Numbers – Rationalize Monomials

If $i = $ then we can rationalize it by just multiplying by		
Example A	Example B	
$\frac{5+3i}{4i}$	$\frac{2-i}{-3i}$	
4i	-3i	
Practice A	Practice B	

Complex Numbers – Rationalize Binomials

Similar to other radicals we can rationalize a binomial by multiplying by the		
(a+bi)(a-bi) =		
Example A	Example B	
$\frac{4i}{2-5i}$	$\frac{4-2i}{3+5i}$	
Practice A	Practice P	
Practice A	Practice B	

Equations with Radicals – Odd Roots

The opposite of taking a root is to do an		
$\sqrt[3]{x} = 4$ then $x =$		
Example A	Example B	
$\sqrt[3]{2x-5}=6$	$\sqrt[5]{4x-7}=2$	
Practice A	Practice B	

Equations with Radicals – Even Roots

The ennesite of taking a root is to do an		
The opposite of taking a root is to do an		
With even roots: in the original e	quation!	
Recall: $(a+b)^2 =$		
Example A	Example B	
$x = \sqrt{5x + 24}$	$\sqrt{40-3x}=2x-5$	
Practice A	Practice B	

Equations with Radicals – Isolate Radical

Before we can clear a radical it must first be		
Example A	Example B	
$4 + 2\sqrt{2x - 1} = 2x$	$2\sqrt{5x+1}-2=2x$	
Practice A	Practice B	

Equations with Radicals – Two Roots

With two roots, fir	rst one root a	nd bo	oth sides
Then	the term with the other	er root and	both sides.
Example A		Example B	
$\sqrt{2}$	$\overline{x} + 1 = \sqrt{x + 12}$	$\sqrt{1-8x}-\sqrt{1-8x}$	$\sqrt{-16x - 12} = 1$
(practice problems	s on the next page)		

Practice A	Practice B

Equations with Exponents – Odd Exponents

The opposite of taking an exponent is to do a		
If $x^3 = 8$, then $x =$		
Example A	Example B	
$(3x+5)^5 = 32$	$(2x-1)^3 = 64$	
Practice A	Practice B	

Equations with Exponents – Even Exponents

Consider: $(5^2) = $ and $(-5)^2 =$	
When we clear an even root we have	
Example A	Example B
$(5x-1)^2 = 49$	$(3x+2)^4 = 81$
Practice A	Practice B

Equations with Exponents – Isolate Exponent

Before we can clear an exponent it must first be	
Example A	Example B
$4 - 2(2x+1)^2 = -46$	$5(3x - 2)^2 + 6 = 46$
Practice A	Practice B

Equations with Exponents – Rational Exponents

To multiply to one: $\frac{a}{b} * \left(\right) = 1$	
We clear a rational exponent by using a	
Recall: $a^{m/n} =$	
Recall: Check answer if, two	answer if
Example A	Example B
$(3x - 6)^{2/3} = 64$	$(5x+1)^{5/4} = 32$
Practice A	Practice B

Complete the Square – Find \boldsymbol{c}

$a^2 + 2ab + b^2$ is easily factored to	
To make $x^2 + bx + c$ a perfect square, $c =$	
Example A	Example B
Find c and factor the perfect square $x^2+10x+c$	Find c and factor the perfect square $x^2 - 7x + c$
Example C	Example D
Find c and factor the perfect square $x^2 - \frac{3}{7}x + c$	Find c and factor the perfect square $x^2 + \frac{6}{5}x + c$
Practice A	Practice B
Practice C	Practice D

Complete the Square – Rational Solutions

To complete the square: $ax^2 + bx + c = 0$	
1. Separate and	
2. Divide by (everything!)	
3. Find and to	
Example A	Example B
$3x^2 - 15x + 18 = 0$	$8x + 32 = 4x^2$
Practice A	Practice B

Complete the Square – Irrational and Complex Solutions

If we can't simplify the	_ we	what we can.
Example A		Example B
$2x^2 - 8x - 3 = 0$		$5x^2 - 3x + 2 = 0$
Practice A		Practice B

Quadratic Formula – Finding the Formula

Solve by completing the square:	
$ax^2 + bx + c = 0$	

Quadratic Formula – Using the Formula

If $ax^2 + bx + c = 0$ then $x =$	
Example A	Example B
$6x^2 + 7x - 3 = 0$	$5x^2 - x + 2 = 0$
Practice A	Practice B

Quadratic Formula – Make Equal to Zero

Before using the quadratic formula, the equation must equal	
Example A	Example B
$2x^2 = 15 - 7x$	$3x^2 + 5x + 2 = 7$
Practice A	Practice B

Quadratic Formula – b = 0

If a term is missing, we use in the quadratic formula.	
Example A	Example B
$7x^2 - 49 = 0$	$3x^2 + 54 = 0$
Practice A	Practice B

Rectangles - Area

Area of a rectangle: To help visualize the rectangle,		
		
Example B		
The area of a rectangle is $72 cm^2$. If the length is 6 cm more than the width, what are the dimensions of the rectangle?		
Practice B		

Rectangles - Perimeter

Perimeter of a Rectangle:		
Tip: Solve the equation for a variable.		
Example A	Example B	
The area of a rectangle is 54 m^2 . If the perimeter is 30 meters, what are the dimensions of the rectangle?	The perimeter of a rectangle is 22 inches. If the area of the same rectangle is 24 in^2 , what are the dimensions?	
Practice A	Practice B	

Rectangles - Bigger

We may have to draw rectangles.		
Multiply/Add to the to get the big red	ctangle.	
Divide/Subtract to the to get the small rectangle.		
Example A	Example B	
Each side of a square is increased 6 inches. When this happens, the area is multiplied by 16. How many inches in the side of the original square?	The length of a rectangle is 9 feet longer than it is wide. If each side is increased 9 feet, then the area is multiplied by 3. What are the dimensions of the original rectangle?	
Practice A	Practice B	

Compound Fractions - Numbers

Compound/Complex Fractions:		
Clear by multiplying each	by the of every	thing!
Example A	Example B	
$\frac{\frac{3}{4} + \frac{5}{6}}{\frac{1}{2} - \frac{4}{3}}$	$\frac{1}{2}$ + 1 +	- 2 - 9 - 4
Practice A	Practice B	

Compound Fractions - Monomials

Recall: To find the LCD with variables, use the	exponents
Be sure to check for!!!!	
Example A	Example B
$\frac{1 - \frac{9}{x^2}}{\frac{1}{x} + \frac{3}{x^2}}$	$\frac{\frac{1}{y^3} - \frac{1}{x^3}}{\frac{1}{x^2y^3} - \frac{1}{x^3y^2}}$
Practice A	Practice B

Compound Fractions - Binomials

The LCD could have one or more	_ in it!
Example A	Example B
$\frac{\frac{5}{x-2}}{3+\frac{2}{x-2}}$	$\frac{\frac{x}{x-9} + \frac{5}{x+9}}{\frac{x}{x+9} - \frac{5}{x-9}}$
Practice A	Practice B

Compound Fractions – Negative Exponents

Recall: $5x^{-3} =$	
If there is any or we can't just _	Instead make
Example A	Example B
$\frac{1 + 10x^{-1} + 25x^{-2}}{1 - 25x^{-2}}$	$\frac{8b^{-3} + 27a^{-3}}{4a^{-1}b^{-3} - 6a^{-2}b^{-2} + 9a^{-3}b^{-1}}$
Practice A	Practice B

MPC 099 Module D: Rational Equations

Rational Equations – Clear Denominator

Recall: $\frac{3}{4}x - \frac{1}{2} = \frac{5}{6}$		
Clear fractions by multiplying	by	
Example A	Example B	
$\frac{5}{x} = \frac{3}{7x} - 4$	$\frac{4}{x+5} + x = \frac{-2}{x+5}$	
Practice A	Practice B	

Rational Equations – Factoring Denominator

To identify all the factors in the	_ we may have to the	
Example A $x \qquad 1 \qquad -3x - 8$	Example B $-9x 2 1$	
$\frac{x}{x-6} + \frac{1}{x-7} = \frac{-3x-8}{x^2-13x+42}$	$\frac{-9x}{x^2 - 9} + \frac{2}{x + 3} = \frac{1}{x - 3}$	
Practice A	Practice B	

Rational Equations – Extraneous Solutions

Because we are working with fractions, the	cannot be
Example A	Example B
$\frac{x}{x-8} - \frac{2}{x-4} = \frac{-3x+56}{x^2 - 12x + 32}$	$\frac{x}{x-2} + \frac{2}{x-4} = \frac{4x-12}{x^2-6x+8}$
Practice A	Practice B

Work Problems – One Unknown Time

of the job.
of the job.
of the job.
hours to do the entire job.
!
Example B
Even can clean a room in 3 hours. If his sister Faith helps, it takes them $2\frac{2}{5}$ hours. How long will it take Faith working alone?
Practice B

Work Problems – Two Unknown Times

Be sure to clearly identify who is the	!
Example A	Example B
Tony does a job in 16 hours less time than Marissa, and they can do it together in 15 hours. How long will it take each to do the job alone?	Alex can complete his project in 21 hours less than Hillary. If they work together it can get done in 10 hours. How long does it take each working alone?
Practice A	Practice B

Simultaneous Products

Simultaneous Product:	equations with	variables that are	
To solve:	both by the same	Then	
Example A			
	xy = 7 $(x - 5)(y + 2)$	2 2) = 56	
Practice A			

Distance/Revenue – Revenue Problems

Revenue Table:			
To solve: Divide by			
Example A	Example B		
A group of college students bought a couch for \$80. However, five of them failed to pay their share so the others had to each pay \$8 more. How many students were in the original group?	A merchant bought several pieces of silk for \$70. He sold all but two of them at a profit of \$4 per piece. His total profit was \$18. How many pieces did he originally purchase?		
(practice problems on the next page)			

Practice A	Practice B

Distance/Revenue – Distance Problems

Distance Table:			
To solve: Divide by			
Example A	Example B		
A man rode his bike to a park 60 miles away. On the return trip he went 2 mph slower which made the trip take 1 hour longer. How fast did he ride to the park?	After driving through a construction zone for 45 miles, a woman realized that if she had driven just 6 mph faster she would have arrived 2 hours sooner. How fast did she drive?		
(practice problems on the next page)			

Practice A	Practice B

Distance/Revenue – Steams and Wind

Downwind/stream:	
Upwind/stream:	
Example A	Example B
Example A Zoe rows a boat downstream for 80 miles. The return trip upstream took 12 hours longer. If the current flows at 3 mph, how fast does Zoe row in still water?	Darius flies a plane against a headwind for 5084 miles. The return trip with the wind took 20 hours less time. If the wind speed is 10mph, how fast does Darius fly the plane when there is no wind?
(practice problems on the next page)	

Practice A	Practice B

Frames – Picture Frames

To help visualize the frame	
Remember the frame is on the and _	, also the and
Example A	Example B
A picture measures 10 inches by 7 inches is placed in a frame of uniform width. If the area of the frame and picture together is 208 square inches, what is the width of the frame?	An 8 inch by 12 inch drawing has a frame of uniform width around it. The area of the frame is equal to the area of the picture. What is the width of the frame?
Dungsting A	Dunation D
Practice A	Practice B

Frames – Percent of a Field

Clearly identify the area of the	and	rect	angles!	
Be careful with	_, is it talking a	bout the	or	?
Example A		Example B		
A man mows his 40 ft by 50 ft rectang a spiral pattern starting from the outs noon he is 90% done. How wide of a scut around the outside edge?	side edge. By	he wants to inc of uniform widt	50 ft by 25 ft rectain crease by 68% by cuth around the curresshould he cultivate	ultivating a strip ent field. How
Practice A		Practice B		

MPC 099 Module E: Functions

Functions – Definition and Vertical Line Test

Function: If it is a function we often write which is read	
A graph is a function if it passes the	, or each has at most one
Example A	Example B
Practice A	Practice B

Functions - Domain

Domain:	
Fractions:	
Even Radicals:	
Example A	Example B
$f(x) = 3\sqrt[4]{2x - 6} + 4$	$g(x) = 3 2x + 7 ^2 - 4$
Practice C	Practice A
$h(x) = \frac{x-1}{x^2 - x + 2}$	
Practice B	Practice C

Functions – Function Notation

Function notation:		
What is incide of the function notation goes		
What is inside of the function notation goes		
Example A	Example B	
$f(x) = -x^2 + 2x - 5$ Find $f(3)$	$g(x) = \sqrt{2x + 5}$ Find $g(20)$	
Practice A	Practice B	

Functions – Evaluate at Expressions

When replacing a variable we always use		
We can replace the variable with		
Example A	Example B	
$p(n) = n^2 - 2n + 5$ Find $p(n-3)$	$f(x) = \sqrt{2x} + 3x$ Find $f(8x^2)$	
Practice A	Practice B	

Algebra of Functions – Add/Subtract/Multiply/Divide

1.
$$(f+g)(x)$$

2.
$$(f - g)(x)$$

3.
$$(f \cdot g)(x)$$

4.
$$\left(\frac{f}{g}\right)(x)$$

$$f(x) = x - 4$$
$$g(x) = x^2 - 6x + 8$$

$$g(x) = x^2 - 6x +$$

$$(f+g)(-2)$$

$$(f-g)(3)$$

$$(f \cdot g)(1)$$

$$\left(\frac{f}{g}\right)(0)$$

Example B

$$f(x) = x^2 - 5x$$
$$g(x) = x - 5$$

$$(f+g)(x)$$

$$(f-g)(x)$$

$$(f \cdot g)(x)$$

$$\left(\frac{f}{g}\right)(x)$$

Practice A Practice B

Algebra of Functions - Composition

Composition of Functions:		
$(f \circ g)(x) = f(g(x))$		
Example A	Example B	
$f(x) = \sqrt{x+6}$ $g(x) = x+3$	$p(x) = x^2 + 2x$ $r(x) = x + 3$	
$(f \circ g)(7) =$	$(p \circ r)(x) =$	
$(g \circ f)(7) =$	$(r \circ p)(x) =$	
Dynatics A	Due etiles D	
Practice A	Practice B	

Inverse Functions – Showing Functions are Inverses

Inverse Function:		
To test if functions are inverses calculate	and	and the answer should be
Example A	Example B	
Are they inverses? $f(x) = 3x - 8$ $g(x) = \frac{x}{3} + 8$		Are they inverses? $f(x) = \frac{5}{x - 3} + 6$ $g(x) = \frac{5}{x - 6} + 3$
Practice A	Practice B	

Inverse Functions – Find the Inverse

To find an inverse function the and, then solve for	
(the is the y!)	
Example A	Example B
$g(x) = 5\sqrt[3]{x - 6} + 4$	$h(x) = \frac{-3}{x - 1} - 2$
Practice A	Practice B
Tractice A	

Inverse Functions – Graph the Inverse

Inverse functions	_ the and	
Identify key and	the	
Example A		Example B
←		
Practice A		Practice B

Graph Quadratic Functions - Key Points

Graph Quadratic Functions – key Points	
Quadratic Equations are of the form:	
Quadratic Graph: Key Points:	
Example A	Example B
$f(x) = x^2 - 2x - 3$	$f(x) = -3x^2 + 12x - 9$
Practice A	Practice B

Exponential Equations – Common Base

Exponential Functions:	
Solving Exponential Functions: If the ar	e equal then the are equal.
Recall Exponent Property: $(a^m)^n =$	
Example A	Example B
$7^{3x-6} = 7^{5x+2}$	$\left(\frac{1}{3}\right)^x = 81^{4x}$
Practice A	Practice B

Exponential Functions – Binomial Exponents

When multiplying exponents we may have to	
Example A	Example B
$8^{2x-4} = 16^{x+3}$	$\left(\frac{1}{25}\right)^{3x-1} = 125^{4x+2}$
Practice A	Practice B

Compound Interest – N Compounds

Compound Interest:	
n compounds per year: $A = P\left(1 + \frac{r}{n}\right)^{nt}$	
A =	
P =	
r =	
n =	
t =	
Example A	Example B
Suppose you invest \$13000 in an account that pays 8% interest compounded monthly. How much would be in the account after 9 years?	You loan out \$800 to you friend at 3% interest compounded quarterly. Your friend pays you back after five years. What does he owe you?
Practice A	Practice B

Compound Interest – Find Principle

Evaluate first	
Example A	Example B
How much money would have to be invested at 6% interest compounded weekly to be worth \$1500 at the end of 15 years?	What principle would amount to \$800 if invested for 10 years at 12% interest compounded semiannually?
Practice A	Practice B

Compound Interest – Continuous Compounds

Continuous Interest:	
$A = Pe^{rt}$	
A =	
P =	
e =	
r =	
t =	
Example A	Example B
An investment of \$25000 is at an interest rate of 11.5% compounded continuously. What is the balance after 20 years?	What is the balance at the end of 10 years on an investment of \$13000 at 4% compounded continuously?
Practice A	Practice B

Compound Interest – Finding Principle with Continuous Interest

Evaluate fi	rst	
Example A		Example B
To pay an \$1100 vacation in 10 years, how mu money should the Franklins invest at 9% interest compounded continuously?		How much should you invest at 12% continuous interest for 100 years in order to have \$1,000,000?
Practice A		Practice B

Logs - Convert

Logarithm:		
$b^x = a$ can be written as		
Example A	Example B	
Write each as a logarithm:	Write each as an exponent:	
$m^2 = 25$	$\log_x 64 = 2$	
$5^x = 125$	$\log_5 x = m$	
Practice A	Practice B	
	1	

Logs - Evaluate

To evaluate a log: make the equation	and convert to an
Example A	Example B
$\log_4 64$	$\log_3 \frac{1}{81}$
Practice A	Practice B

Logs - Solving

To solve a logarithmic equation:		
Example A	Example B	
$\log_x 8 = 3$	$\log_5(2x - 6) = 2$	
Practice A	Practice B	